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Distributed Average Consensus
With Dithered Quantization
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Abstract—In this paper, we develop algorithms for distributed
computation of averages of the node data over networks with band-
width/power constraints or large volumes of data. Distributed
averaging algorithms fail to achieve consensus when determin-
istic uniform quantization is adopted. We propose a distributed
algorithm in which the nodes utilize probabilistically quantized
information, i.e., dithered quantization, to communicate with each
other. The algorithm we develop is a dynamical system that gen-
erates sequences achieving a consensus at one of the quantization
values almost surely. In addition, we show that the expected value
of the consensus is equal to the average of the original sensor
data. We derive an upper bound on the mean-square-error per-
formance of the probabilistically quantized distributed averaging
(PQDA). Moreover, we show that the convergence of the PQDA
is monotonic by studying the evolution of the minimum-length
interval containing the node values. We reveal that the length
of this interval is a monotonically nonincreasing function with
limit zero. We also demonstrate that all the node values, in the
worst case, converge to the final two quantization bins at the same
rate as standard unquantized consensus. Finally, we report the
results of simulations conducted to evaluate the behavior and the
effectiveness of the proposed algorithm in various scenarios.

Index Terms—Average consensus, distributed algorithms,
dithering, probabilistic quantization, sensor networks.

I. INTRODUCTION

A D HOC networks of autonomous sensors and actuators
are attractive solutions for a broad range of applications.

Such networks find use in civilian and military applications,
including target tracking and surveillance for robot navigation,
source localization, weather forecasting, medical monitoring
and imaging. In general, the networks envisioned for many
of these applications involve large numbers of possibly ran-
domly distributed inexpensive sensors, with limited sensing,
processing and communication power on board. In many of the
applications, limitations in bandwidth, sensor battery power
and computing resources place tight constraints in the rate
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and form of information that can be exchanged [3]–[5]. Other
applications such as camera networks and distributed tracking
demand communication of large volumes of data. When the
power and bandwidth constraints, or large volume data sets
are considered, communication with unquantized values is
impractical.

Distributed average consensus—the task of ensuring that all
nodes in a network are aware of the average of a set of net-
work-wide measurements—is a fundamental problem in ad hoc
network applications, including distributed agreement and syn-
chronization problems [6], distributed coordination of mobile
autonomous agents [7], [8], and distributed data fusion in sensor
networks [3], [9], [10]. It is also a central topic for load bal-
ancing (with divisible tasks) in parallel computers [11], [12].
Our previous work has illustrated how distributed average con-
sensus can be used for two distributed signal processing tasks:
source localization [13], and data compression [14]. Decentral-
ized data compression, in particular, requires the computation
of many consensus values in parallel (one for each compression
coefficient). By appropriately quantizing each coefficient, mul-
tiple coefficients can be transmitted in a single packet, leading
to a significantly more efficient implementation.

Distributed averaging algorithms are extremely attractive for
applications in wirelessly networked systems because nodes
only exchange information and maintain state for their imme-
diate neighbors. Consequently, there is no need to establish or
maintain complicated routing structures. Also, there is no single
bottleneck link (as in a tree) where the result of in-network
computation can be compromised or lost or jammed by an
adversary. Finally, consensus algorithms have the attractive
property that, at termination, the computed value is available
throughout the network, so a network user can query any node
and immediately receive a response, rather than waiting for the
query and response to propagate to and from a fusion center.

In both wireless sensor and peer-to-peer networks, there is
interest in simple protocols for computing aggregate statistics
[15]–[18]. In this paper, we focus on a particular class of iter-
ative algorithms for average consensus. Each node updates its
state with a weighted sum of values from neighboring nodes,
i.e.

(1)

for and . Here is a weight asso-
ciated with the edge and is the total number of nodes.
These weights are algorithm parameters [3], [9]. Furthermore,

denotes the set of nodes that have a direct (bidirectional)
communication link with node . The state at each node in the
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iteration consists of a single real number, which overwrites the
previous value. The algorithm parameters are time-indepen-
dent, i.e., do not depend on . Under easily verified conditions
on it is easy to show that the value at each node con-
verges to asymptotically as .

Xiao, Boyd, and Kim extended the distributed consensus al-
gorithm to admit noisy communication links where each node
updates its local variable with a weighted average of its neigh-
bors’ values, and each new value is corrupted by an additive
noise with zero mean [19]

(2)

where is the additive zero-mean noise with fixed variance.
They pose and solve the problem of designing weights that
lead to optimal steady-state behavior, based on the assumption
that the noise terms are independent.

A. Related Work

While there exists a substantial body of work on average
consensus protocols with infinite precision and noise-free
peer-to-peer communications, little research has been done
introducing distortions in the message exchange. Recently,
Yildiz and Scaglione, in [20], explored the impact of quanti-
zation noise through modification of the consensus algorithm
proposed by Xiao, Boyd, and Kim [19]. They note that the
noise component in (2) can be considered as the quantization
noise and they develop an algorithm for predicting neighbors’
unquantized values in order to correct errors introduced by
quantization [20]. Simulation studies for small indicate that
if the increasing correlation among the node states is taken into
account, the variance of the quantization noise diminishes and
nodes converge to a consensus.

Kashyap et al. examine the effects of quantization in con-
sensus algorithms from a different point of view [21]. They
require that the network average be
preserved at every iteration. To do this using quantized trans-
missions, nodes must carefully account for round-off errors.
Suppose we have a network of nodes and let denote
the “quantization resolution” or distance between two quan-
tization lattice points. If is not a multiple of , then it is
not possible for the network to reach a strict consensus (i.e.,

) while also preserving
the network average, , since nodes only ever exchange units
of . Instead, Kashyap et al. define the notion of a “quan-
tized consensus” to be such that all take on one of two
neighboring quantization values while preserving the network
average; i.e., for all and some , and

. They show that, under reasonable conditions,
their algorithm will converge to a quantized consensus. How-
ever, the quantized consensus is clearly not a strict consensus,
i.e., all nodes do not have the same value. Even when the algo-
rithm has converged, as many as half the nodes in the network
may have different values. If nodes are strategizing and/or per-
forming actions based on these values (e.g., flight formation),
then differing values may lead to inconsistent behavior.

Of note is that both related works discussed above utilize stan-
dard deterministic uniform quantization schemes to quantize the
data. In contrast to [20], where quantization noise terms are
modeled as independent zero-mean random variables, we ex-
plicitly introduce randomization in our quantization procedure,
i.e., “dithering.” Careful analysis of this randomization allows
us to provide concrete theoretical rates of convergence in addi-
tion to empirical results. Moreover, the algorithm proposed in
this paper converges to a strict consensus, as opposed to the ap-
proximate “quantized consensus” achieved in [21]. In addition
to proving that our algorithm converges, we show that the net-
work average is preserved in expectation, and we characterize
the limiting mean squared error (MSE) between the consensus
value and the network average.

B. Summary of Contributions

Constraints on sensor cost, bandwidth, and energy budget dic-
tate that information transmitted between nodes has to be quan-
tized in practice [3], [4]. In this paper, we propose a simple dis-
tributed and iterative scheme to compute the average at each
sensor node utilizing only quantized information communica-
tion. Standard, deterministic uniform quantization does not lead
to the desired result. Although the standard distributed aver-
aging algorithm converges to a fixed point when deterministic
uniform quantization is used, it fails to converge to a consensus
as illustrated in Fig. 1(a). Instead, we adopt the probabilistic
quantization (PQ) scheme described in [4]. PQ has been shown
to be very effective for estimation with quantized data since the
noise introduced by PQ is zero-mean [4]. This makes PQ suit-
able for average-based algorithms. As shown in Section II, the
PQ algorithm is a form dithered quantization method. Dithering
has been widely recognized as a method to render the quanti-
zation noise independent of the quantized data, reducing some
artifacts created by deterministic quantization and there is a vast
literature on the topic, see [22] and references therein.

In the scheme considered here, each node exchanges quan-
tized state information with its neighbors in a simple and bidi-
rectional manner. This scheme does not involve routing mes-
sages in the network; instead, it diffuses information across net-
work by updating each node’s data with a weighted average
of its neighbors’ quantized ones. We do not burden the nodes
with extensive computations, and we provide theoretical results,
i.e., we show here that the distributed average computation uti-
lizing probabilistic consensus indeed achieves a consensus al-
most surely (Fig. 1), and the consensus is one of the quanti-
zation levels. Furthermore, the expected value of the achieved
consensus is equal to the desired value, i.e., the average of the
initial analog node measurements. We also give an upper bound
on the MSE performance of the probabilistically quantized dis-
tributed averaging (PQDA) algorithm.

We also investigate the evolution with time of the interval
occupied by the node values. Specifically, we show that the size
of this interval is a monotonically nonincreasing function, with
limit zero. These results indicate that the convergence of the
PQDA algorithm is monotonic in the sense that the global trend
of the node values is towards the consensus. Moreover, we show
here that all the node values, in the worst case, arrive in the final
two quantization bins at the same rate as standard unquantized
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Fig. 1. Individual node trajectories (i.e., � ������) taken by the distributed average consensus using (a) deterministic uniform quantization and (b) probabilistic
quantization. The number of nodes is � � ��, the nodes’ initial average is ���� � ����, and the quantization resolution is set to � � ���. The consensus value,
in this case, is 0.8.

consensus. Of note is that there is always a nonzero probability
of achieving consensus when all the node values are in the final
two bins. Finally, we present simulation results evaluating the
proposed algorithm in varying scenarios and showing the effec-
tiveness of the PQDA algorithm.

C. Paper Organization

The remainder of this paper is organized as follows.
Section II reviews the graph theoretical concepts, introduces
the distributed average consensus problem along with the
probabilistic quantization scheme, and, reveals the connections
between probabilistic quantization and dithering theory. The
proposed algorithm, along with its properties, is detailed in
Section III. Section IV presents results regarding the con-
vergence characteristics of the proposed PQDA algorithm.
Numerical examples evaluating the performance of the pro-
posed algorithm in varying scenarios are provided in Section V.
Some extensions of the proposed algorithm along with ad-
ditional practical considerations are detailed in Section VI.
Finally, we conclude with Section VII.

II. PRELIMINARIES

In the following, the distributed average consensus problem is
formulated utilizing the probabilistic quantization concept. We
first review some basic concepts from graph theory and then
formulate the consensus problem in which the nodes communi-
cate with quantized data. Finally, we provide a brief review of
probabilistic quantization and reveal the connections between
probabilistic quantization and dithering theory.

A. Review of Graph Theoretical Concepts

Let be a graph consisting of a set of vertices, ,
and a set of edges . Let denote the number of ver-
tices, where denotes the cardinality. We denote an edge be-
tween vertices and as an unordered pair . The pres-
ence of an edge between two vertices indicates that they can es-
tablish bidirectional noise-free communication with each other.

We assume that transmissions are always successful and that the
topology is fixed. We assume connected network topologies and
the connectivity pattern of the graph is given by the ad-
jacency matrix , where

if
otherwise.

(3)

Moreover, we denote the neighborhood of the node by
. Also, the degree of the node is

given by .

B. Distributed Average Consensus

We consider a set of nodes of a network (vertices of the
graph), each with an initial real valued scalar ,
where . Let denote the vector of ones. Our
goal is to develop a distributed iterative algorithm that computes
the value at every node in the network, while
using quantized communication. We hence aim to design a
system such that the states at all nodes converge to a consensus
and the expectation of the consensus achieved, in the limit, is
the average of the initial states.

The average of node measurements is a sufficient statistic for
many problems of interest. The following two remarks briefly
discusses two examples.

Remark 1: When the observations follow where
and is the scalar to be estimated, and the

noises, , are independent and identi-
cally distributed (i.i.d.) zero-mean Gaussian with variance ,
the maximum-likelihood estimate is given by the average,

with the associated MSE .
Remark 2: Suppose node measurements

are i.i.d. conditioned on some hypothesis , with

, where . Let, , where

. Then, the optimal decision
is to perform the following detection rule:

where .
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C. Probabilistic Quantization and Dithering

In the following, we present a brief review of the quantization
scheme adopted in this paper. Suppose that the scalar value

is bounded to a finite interval . Furthermore, suppose
that we wish to obtain a quantized message with length bits,
where is application dependent. We, therefore, have
quantization points given by the set where

and . The points are uniformly spaced such
that for . It follows that

. Now suppose and let
where denotes the PQ operation. Then is quantized in a
probabilistic manner

and (4)

where . Of note is that when the variable to
quantize is exactly equal to a quantization centroid, there is zero
probability of choosing another centroid. The following lemma,
adopted from [4], discusses two important properties of PQ.

Lemma 1: [4] Suppose and let be an -bit
quantization of . The message is an unbiased
representation of , i.e.,

and (5)

As noted in the following lemma, a careful observation shows
that probabilistic quantization is equivalent to a “dithered quan-
tization” method.

Lemma 2: Suppose and let .
Probabilistic quantization is equivalent to the following
dithered quantization scheme:

(6)

where is a uniform random variable with support on
.

Proof: Without loss of generality, suppose
. Moreover, suppose we are utilizing a deterministic

uniform quantizer. Then

(7)

(8)

(9)

Note that the last line is equivalent to , so the proof is
complete.

Thus, before we perform any quantization, we add uniform
random variable with support defined on and
we form . Now, performing standard deterministic
uniform quantization, i.e., letting , yields
quantized values, s that are statistically identical to the ones
of the probabilistic quantization. Thus, probabilistic quantiza-
tion is a form of dithering where one, before performing stan-
dard deterministic uniform quantization, adds a uniform random
variable with support equal to the quantization bin size. This
is a substractively dithered system [22]. It has been shown by

Schuchman that the substractive dithering process utilizing uni-
form random variable with support on yields error
signal values that are statistically independent from each other
and the input [23].

III. DISTRIBUTED AVERAGE CONSENSUS WITH

PQ COMMUNICATION

In the following, we propose a quantized distributed average
consensus algorithm and incorporate PQ into the consensus
framework for networks. Furthermore, we analyze the effect
of PQ on the consensus algorithm. Specifically, we present
theorems revealing the limiting consensus, expectation and
MSE of the proposed PQDA algorithm.

At (after all sensors have taken the measurement), each
node initializes its state as , i.e., , where

denotes the initial states at the nodes. It then quantizes
its state to generate . At each following step,
each node updates its state with a linear combination of its own
quantized state and the quantized states at its neighbors

(10)

for , where , and denotes the
time step. Also, is the weight on at node . Moreover,
setting whenever , the distributed iterative
process reduces to the following recursion:

(11)

where denotes the quantized state vector, followed by

(12)

The PQDA algorithm hence refers to the iterative algorithm
defined by (11) and (12). In the sequel, we assume that ,
the weight matrix, is symmetric, nonnegative, and satisfies the
conditions required for asymptotic average consensus without
quantization [19]

and (13)

where denotes the spectral radius of a matrix (i.e., the

largest eigenvalue of in absolute value), and ,
where projects onto the -dimensional “diagonal” sub-
space (i.e., the set of vectors in corresponding to a strict
consensus). Weight matrices satisfying the required conver-
gence conditions are easy to find if the underlying graph
is connected and nonbipartite, e.g., Maximum-degree and
Metropolis weights [19].

The following theorem considers the convergence of the
probabilistically quantized distributed average computation.

Theorem 1: The probabilistically quantized distributed iter-
ative process achieves a consensus, almost surely, i.e.,

(14)

where .
Proof: Without loss of generality, we focus on integer

quantization in the range . Define as the discrete
Markov chain with initial state and transition matrix
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defined by the combination of the deterministic transfor-
mation and the probabilistic quantizer

.
Let be the set of quantization points that can be represented

in the form for some integer and denote by the set of
quantization points with Manhattan distance from . More-
over, let be the open hypercube centered at and defined
as .
Here denotes the th coefficient of . Note that any point in

has a nonzero probability of being quantized to . Let

(15)

The consensus operator has the important property that
for ,

where denotes the projection of its argument onto
the -vector. Moreover, . The latter prop-
erty implies that is an absorbing state, since

. The former
property implies that there are no other absorbing states, since

cannot equal (it must be closer to the -vector).
This implies, from the properties of the quantizer , that there
is a nonzero probability that .

In order to prove that is an absorbing Markov chain, it
remains to show that it is possible to reach an absorbing state
from any other state. We prove this by induction, demonstrating
first that

(16)

and subsequently that

(17)

Define the open set as

(18)

To commence, observe that . The distance
for . Hence, if ,

and .
Similarly, the set

(19)

is contained in the union of the first hypercubes, ,
. The maximum distance for any point

is . This implies that

(20)

There is, thus, some and some such that
. This argument implies that for

any starting state such that for some , there
exists a sequence of transitions with nonzero probability whose
application results in absorption.

The theorem reveals that the probabilistically quantized dis-
tributed process indeed achieves a strict consensus at one of
the quantization values. It is of interest to note that the sta-
tionary points of the PQDA algorithm are in the form of
where . We, hence, construct an absorbing Markov chain
where the absorbing states are given by the stationarity points
and show that for any starting state, there exists a sequence of
transitions with nonzero probability whose application results
in absorption. The following theorem discusses the expectation
of the limiting random vector, i.e., the expected value of as

tends to infinity.
Theorem 2: The expectation of the limiting random vector is

given by

(21)

Proof: Note that , for , and,
is bounded for all . Moreover, from Theorem

1, we know that the random vector sequence converges in
the limit, i.e., for some . Thus, by the
Lebesgue dominated convergence theorem [24], we have

(22)

In the following, we derive and utilize the
above relationship to arrive at the desired result.

In terms of quantization noise , we can write
. The distributed iterative process reduces to the fol-

lowing recursion: . Repeatedly
utilizing the state recursion gives

(23)

Taking the statistical expectation of as and noting
that the only random variables are for ,
yields

(24)

(25)

since for ; a corollary of Lemma
1. Furthermore, noting that gives

(26)

Recalling (22) gives the desired result.
This result indicates that the expectation of the limiting

random vector is indeed equal to the initial analog node mea-
surements’ average. Furthermore, this theorem, combined with
the previous one, indicates that the consensus value is a
discrete random variable with support defined by , and whose
expectation is equal to the average of the initial states.

After establishing that the consensus value is a random vari-
able with the desired expectation in the limit, the next natural
quantity of interest is the limiting MSE, i.e., the limiting av-
erage squared distance of the consensus random variable from
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the desired initial states’ average value. The following theorem,
thus, considers the expectation of the error norm of probabilis-
tically quantized consensus as and tend to infinity.

Theorem 3: Let us define . The expectation
of the error norm of the probabilistically quantized distributed
average consensus is asymptotically bounded by

(27)
where denotes the spectral radius of its argument.

Proof: See Appendix A.
The proof exploits averaging characteristics of , properties

of norm operators, and uses a Law of Large Numbers argument
to bound the error contributed by quantization noise.

Note that the upper bound decreases with decreasing spectral
radius of , where a smaller (larger) can be, in
a loose manner, interpreted as better (worse) “averaging ability”
of the weight matrix. Furthermore, as expected, the upper bound
on the error norm increases with decreasing quantization reso-
lution (i.e., increasing ).

IV. CONVERGENCE CHARACTERISTICS OF PQDA CONSENSUS

The convergence characteristics of the PQDA are essential
for further understanding of the algorithm. In the following, we
consider the evolution of the intervals occupied by the quan-
tized and unquantized state values. Interestingly, we reveal that
the length of the smallest interval containing all of the quan-
tized state values, (i.e., the range of the quantized state values)
is nonincreasing with a limit of zero as the time step tends to
infinity. Moreover, we show that size of the minimum length
interval, with boundaries constrained to the quantization points,
that contains all of the unquantized node state values, is also
nonincreasing. This also has limit zero as the time step tends to
infinity.

Let us denote the smallest and largest order statistics of any
vector as and ,
respectively. Furthermore, let denote the interval of the
node state values at time , i.e., the interval in which

values lie

(28)

and denote the domain of the quantized node state values
at time , i.e.,

(29)

Moreover, let

(30)

and

(31)

along with .
The following theorem discusses the evolution of the in-

terval of the quantized node state values, and the minimum

range quantization bin that encloses the node state values. The
theorem reveals that both intervals are nonexpanding.

Theorem 4: For some , suppose that ,
and, , for . By construction

(32)

Then, for , the following holds.
i) The interval of the quantized state vector is nonexpanding,

i.e.,

(33)

ii) The minimum length interval with boundaries defined by
quantization points that encloses the state vector values
is nonexpanding, i.e.,

(34)

Proof: Consider (i) first. Suppose that , for
, and recall that the state recursion follows as

. Let denote the row vector formed as the
th row of the weight matrix . Now, we can write the node

specific update equation as

(35)

Note that is a linear combination of quantized local
node values and for , where denotes
the th entry of . Moreover, , since . Thus,

is a convex combination of the quantized node state
values and its own quantized state. The node state value
is then in the convex hull of quantized state values

. The convex hull of the quantized state values at
time is given by , indicating that

(36)

for , and subsequently

(37)

Hence, we see that

(38)

for some and

(39)

for some and . It follows that

(40)

Repeatedly utilizing the above steps completes the proof.
Now consider (ii). Suppose that for

. Then, by construction, . Further-
more, since

(41)
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and

(42)

it follows that

(43)

for . The convex combination property, similar
to the previous case, indicates that, for

, and subsequently, . Moreover,
since, , it follows that

(44)

indicating that . Finally combining all the
results, i.e.,

(45)

and repeatedly utilizing the above steps completes the proof.
The proof of this theorem indicates that each iteration is in-

deed a convex combination of the previous set of quantized node
state values, and uses of the properties of convex functions to ar-
rive at the stated results.

Let us define as the Lebesgue measure of the domain
of the quantized state vector at time step , i.e., the range of

(46)

where . Similar to the quantized

state vector case, we define as the length
of the interval .

The following corollary (the proof of which is omitted since
it follows directly from Theorem 1 and Theorem 4), compiled
from Theorem 1 and Theorem 4, discusses properties of interest
of and .

Corollary 1: The functions and , with initial con-
ditions and , tend to zero as tends to
infinity, i.e.,

(47)

and

(48)

Moreover, and are monotonically nonincreasing
functions.

The presented theorem and corollary indicate that the con-
vergence of the PQDA is monotonic in the sense that the global
trend of both the quantized and unquantized node state values
is towards the consensus and that the minimum-length intervals
containing all values do not expand, and in fact, converge to
zero-length monotonically. The following theorem investigates
the rate of convergence of the PQDA to a state where there is
a first time nonzero probability of converging to the consensus
(all values are contained within two quantization bins).

Theorem 5: Let and
denote the range of the quantized and un-

quantized node state values at time step , with the initial values
and , respectively. Then

(49)

where denotes the spectral radius of its argument.
Proof: See Appendix B.

In the Appendix, we compile an upper and lower bound on
the largest and smallest order statistics of the quantized node
state vector using results from [25], [26]. Then, the task reduces
to deriving a bound on the convergence rate of the normed dif-
ference of any row and with time, and combining this bound
with the bounds on the order statistics gives the desired result.

Theorem 5 reveals that the PQDA converges to the final two
bins with the same rate as standard consensus. Theorem 5 also
relates the convergence of the quantized node state values range
to the range of initial node measurements.

After all the node state values are in the final two bins, there
is always a nonzero probability to immediately converge to con-
sensus. Note that, in the absence of knowledge of the norm of
the initial node states or the initial state range, the bound given
above reduces to

(50)

where we used the facts that and
.

To understand the convergence of the PQDA algorithm after
all the quantized states converged to the final two bins, first,
let us discuss the behavior of the PQDA algorithm in the final
bin, i.e., . Suppose

, for some . In this case, all the nodes state values
need to be quantized to or to achieve a consensus at
time step . Hence, the effect of the weight matrix on the con-
vergence rate significantly decreases and the convergence rate is
mainly dominated by the probabilistic quantization. Moreover,
we hence believe that the time interval, where all the node state
values are in and , is a transition period between the
dominating effect of the weight matrix, i.e., the spectral radius of

, and the dominating effect of probabilistic quantization.
Obtaining analytical expressions of convergence rate for these
transition and final bin regions appears to be a challenging task.
Although our current research efforts focus on this challenge,
we assess the convergence performance of the PQDA algorithm
with extensive simulations in the following section.

V. NUMERICAL EXAMPLES

This section details numerical examples evaluating the per-
formance of the distributed average computation using proba-
bilistic quantization. Throughout the simulations we utilized the
Metropolis weight matrix defined for a graph [3].
The Metropolis weights on a graph are defined as follows:

, and

otherwise.
(51)
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Fig. 2. The plotted are is the interval in which the quantized state vector is. The
number of nodes is � � ��, the nodes’ initial average is ���� � ����, and the
quantization resolution is set to � � ���.

This method of choosing weights is adapted from the Metropolis
algorithm in the literature of Markov chain Monte Carlo [3],
[19]. The Metropolis weights are very simple to compute and are
well suited for distributed implementation. In particular, each
node only needs to know the degrees of its neighbors to deter-
mine the weights on its adjacent edges. Furthermore, the nodes
do not need any global knowledge of the communication graph
or even the total number of nodes.

We simulate a network with nodes randomly dis-
persed on the unit square [0,1] [0,1], connecting two nodes
by an edge if the distance between them is less than the connec-
tivity radius, i.e., . Thus, a link exists between
any two nodes that are at a range less than . Throughout this
section, the initial states are drawn i.i.d. from a uniform distri-
bution as following: , where is i.i.d. uniformly
distributed with support in the interval. The initial states
are then regularized such that . The quanti-
zation resolution is taken as . Plotted in Fig. 2 is
and at every time step (corresponding to node trajectories
given in Fig. 1). The figure indicates that the proposed algorithm
does indeed achieve consensus as the interval in which the quan-
tized state vector converges to zero and is monotonically non-
expanding, corroborating the theoretical results. In this case, the
consensus is , which is in agreement with
the theoretical results indicating that the consensus is at one of
the quantization levels.

We next investigate the effect of the quantization resolution
and the location of the initial state average on the consensus
standard deviation. Fig. 3 plots the error norm of the consensus
for varying when and for varying

when . Also plotted is the derived
upper bound on the PQDA. Note that each data point in the plots
is an ensemble average of 1000 trials. The variance, as expected,
tends to increase as increases and exhibits a harmonic be-
havior as the location of the average changes. This is due to the
effect induced by the distance of the average to the quantization
levels.

Fig. 4 shows the behavior of the average MSE per iteration
defined as

(52)

for . In other words, is the
average mean squared distance of the states at iteration from
the initial mean. Each curve is an ensemble average of 1000 ex-
periments and the network parameters are: ,

, and . The plots suggest that smaller
quantization bins yield a smaller steady state MSE and that as
quantization bin size increases, the number of iterations taken
by PQDA to reach the final quantization bin decreases. The
quasi-convex shape of the MSE curves are due to the fact that
the algorithm, after all the state values converge into a quanti-
zation range for some , drifts to
a quantization value.

Considered next is the consensus value of the PQDA
algorithm. Fig. 5 plots the histograms of the con-
sensus value for varying initial state average, i.e.,

for . The number
of nodes in the network is . Note that the consensus
values shift as the initial average value shifts from 0.80 to
1.00. This is directly related to the fact that the consensus, in
expectation, is equal to the average of initial states as provided
by the theoretical results.

We investigate the average convergence time of the dis-
tributed average consensus using probabilistic quantization for
varying against the number of nodes in the
network, Fig. 6(a) and (b). We also show the average number of
iterations taken to achieve the final quantization bin. Moreover,
Fig. 6(c) and (d) plots the average normalized distance to the
closest absorbing state at the first time step when all the quan-
tized node state values are in the final quantization bin. The
initial state averages are and , and the
connectivity radius is . Each data point is
an ensemble average of 10 000 trials. Note that the convergence
time increases with the number of nodes in the network. The
plots suggest that the number of iterations taken by the PQDA
algorithm to converge to final quantization bin decreases as
increases. This can be seen by noting that the algorithm has
to go through less “averaging” (multiplication with the weight
matrix) before arriving at the final bin. It is, hence, clear that
the algorithm needs to run for a smaller number of iterations to
arrive at a larger final bin size.

On the other hand, as discussed in more detail below, the ex-
pected number of iterations taken to achieve consensus is dom-
inated by the number of iterations taken to converge to an ab-
sorbing state after all the node values are in the final bin. The
probabilistic quantization is the dominant effect in the final bin.
The time taken to converge to an absorbing state is heavily de-
pendent on the distance to that absorbing state at the first time
step when all values enter the final bin. This distance is affected
by two factors. First, if more averaging operations occur prior
to the entry step, then there is more uniformity in the values, de-
creasing the distance. Second, if the initial data average is close
to a quantization value, then, on average, the entry point will be
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Fig. 3. The error norm of the consensus with respect to (a) the quantization resolution, i.e., � � ������ ���� with ���� � ��	� and (b) the initial state average
with � � ��
�. The network parameter are: � � �� and � � ��
����� .

Fig. 4. The average MSE of the probabilistically quantized distributed
average consensus for varying quantization resolution where � �
���������� �������
�. The remaining network parameters are: � � ��,
���� � ��	�, and � � ��
����� .

closer to an absorbing state (note that ).
These observations explain the results of Fig. 6. Note that the
convergence time order for and cases
flip for and . That is due to the fact that the av-
erage distance to an absorbing when, at the first time step, all the
node values enter the final bin is smaller for when

compared to , and is smaller for
when compared to . Moreover, note that

yields the smallest distance to an absorbing state for
both initial conditions. Although, it takes more iterations to con-
verge to final bin, in both cases, PQDA algorithm with
yields the smallest average distance to an absorbing state when
all the node values enter to the final bin for the first time step,
hence, the smallest average number of iterations to achieve the
consensus.

Fig. 5. Histograms of the consensus value achieved by the proba-
bilistically quantized consensus for varying initial state average where
���� � ���	����	
�� � � � � ����� and � � ��
. The number of nodes in the
network is � � ��.

We consider next the effect of the connectivity radius on the
average number of iterations taken to achieve the consensus.
Fig. 7 depicts the average number of iterations to achieve the
consensus for the cases where the initial state average is

and . As expected, the average number of it-
erations taken to achieve consensus decreases with increasing
connectivity radius. This is related to the fact that higher con-
nectivity radius, implies a lower second largest eigenvalue for
the weight matrix. Moreover, as in the previous case, the conver-
gence time is related to the distance of the initial state average
to a quantization value for a given quantization resolution. Of
note is that 0.85 is a quantization point for , and 0.90
is a quantization point for both and . The
combined results of the presented experiments indicate that the
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Fig. 6. Average number of iterations taken by the probabilistically quantized distribute average computation to achieve final quantization bin (dashed) and con-
sensus (solid) for � � ������ ���� ���� and for varying � with (a) ���� � ��	� and (b) ���� � ��
�, along with the corresponding average distance to the
closest absorbing state at the first time step when all the quantized node state value are in the final quantization bin for (c) ���� � ��	� and (d) ���� � ��
�.

expected number of iterations required to reach a consensus de-
pends on the following factors:

1) quantization resolution;
2) initial node measurements;
3) number of nodes in the network;
4) connectivity radius.

Note that (1), (3), and (4) are system design choices, affected
by energy budgets and bandwidth constraints, but (2) is data-
dependent. This implies that the quantization resolution, given
the bandwidth and power constraints of the application, should
be chosen to minimize the expected (or worst-case) convergence
time over the range of possible initial averages.

VI. FURTHER CONSIDERATIONS

The analysis presented in this paper makes two main simpli-
fying assumptions: 1) the network topology does not change
over time, and 2) communication between neighboring nodes

is always successful. The simplifying assumptions essentially
allow us to focus on the case where the weight matrix, ,
does not change with time. However, time-varying topologies
and unreliable communications are important practical issues
which have been addressed for unquantized consensus algo-
rithms (see, e.g., [3], [27], and [28]). Since has the same
support as the adjacency matrix of the underlying communi-
cation graph, when the topology changes with time, the aver-
aging weights must also vary. Likewise, an unsuccessful trans-
mission between two nodes is equivalent to the link between
those nodes vanishing for one iteration. In either case, we can
now think of as random process. Typical results for this
scenario roughly state that average consensus is still accom-
plished when the weight matrix varies with time, so long as
the expected weight matrix, , is connected. This con-
dition ensures that there is always nonzero probability that in-
formation will diffuse throughout the network. We expect that
the same techniques employed in [3], [27], [28] can be used to
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Fig. 7. Average number of iterations taken by the probabilistically quantized distribute average computation for � � ������ ���� ���� with (a) ���� � ��	�
and (b) ���� � ��
�. The number of nodes in the network is � � ��. Connectivity radius factor is defined as the modulating constant �, in the expression
for the connectivity radius � � � ��
����� .

show convergence of our average consensus with probabilistic
quantization with time-varying .

In this paper, we also restricted ourselves to the scenario
where the quantization step size remains fixed over all time.
Recall that when the algorithm has converged to a consensus, all

are at the same quantization point, so .

Letting denote Euclidean distance
to convergence, we know that when the algorithm is far from
converging (i.e., large), quantization errors have less of
an effect on convergence of the algorithm. This is because
the averaging effects of are multiplicative and thus have a
stronger influence when is large, whereas the quantization
error is bounded by a constant which only depends on and
not on . When is of the same order as the quantization
noise variance, quantization essentially wipes away the effects
of averaging and hampers the time to convergence. A natural
extension of the algorithm proposed in this paper involves
shrinking the quantization step size over time, e.g., setting

once is established to be below the
threshold where quantization effects outweigh averaging. We
expect that this modification should improve the rate at which

tends to zero without affecting statistical properties of
the limiting consensus values (i.e., unbiased with respect to

, and no increase in the limiting variance). Solidifying this
procedure is a topic of current investigation.

VII. CONCLUDING REMARKS

We have described PQDA, a framework for distributed com-
putation of averages of the node data over networks with band-
width/power constraints or large volumes of data. The proposed
method unites the distributed average consensus algorithm and
probabilistic quantization, which is a form of “dithered quanti-
zation.” The proposed PQDA algorithm achieves a consensus,
and the consensus is a discrete random variable whose support

is the quantization values and expectation is equal to the average
of the initial states. We have derived an upper bound on the MSE
performance of the PQDA algorithm. Our analysis demonstrates
that the minimum-length intervals (with boundaries constrained
to quantization points) containing the quantized and unquan-
tized state values are nonexpanding. Moreover, the lengths of
these intervals are nonincreasing functions with limit zero, in-
dicating that convergence is monotonic. In addition, we have
shown that, all the node state values, in the worst case, arrive in
the final two quantization bins at the same rate as standard, un-
quantized consensus algorithms. Finally, we have provided nu-
merical examples illustrating the effectiveness of the proposed
algorithm and highlighting the factors that impact the conver-
gence rate.

APPENDIX A
PROOF OF THEOREM 3—ERROR NORM OF PQDA CONSENSUS

Consider the following set of equalities:

(53)

(54)

(55)

where we use the facts that , for ,
and , for . Now the eigendecomposition of
yields

(56)
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where denotes the eigenvector associated with the eigen-
values . Eigendecomposition further indicates that

(57)

Since and , the eigenvector associated
with the eigenvalue is given by . Sub-
stituting this information into the error norm equation gives

(58)

(59)

(60)

Moreover, applying the Triangle inequality and using the facts
that and that

(61)

after multiplying both sides with gives

(62)

We need to following lemma to continue with the proof.
Lemma 3: The average quantization error, at a fixed time step

, converges in probability as the network size tends to infinity,
i.e.,

(63)

for and all . Thus,

(64)

for all .

Proof: It follows from Lemma 1 that and

(65)

(66)

(67)

(68)

Now using Chebyshev’s Inequality, we obtain

(69)

(70)

Now, taking the limit as , we see that the RHS of the
above goes to zero for all . Thus, the probability of
being greater than zero is equal to zero for , and this im-
plies that , since convergence in prob-
ability implies convergence in expectation for bounded random
variables.

The error norm equation, after taking the expectation and
limit as , since the limit of each exists and
equals zero (from Lemma 3), reduces to

(71)

Furthermore, utilizing the Norm inequality gives

(72)

In the following, we derive an upper bound of
for to bound . Consider the
expectation of the quantization noise

(73)

Note that is a concave function. The concavity
indicates that utilizing Jensen’s inequality gives

(74)
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Now using the upper bound for the expectation of the quanti-
zation noise variance term, i.e., Lemma 1, indicates that the ex-
pectation of the quantization noise norm is bounded by

(75)

Now, substituting this result into the error norm equation,
after some manipulations, gives

(76)

Recall that , hence, applying the Geometric Series
equality, i.e.,

(77)

further yields

(78)

Now, taking the limit as tends to infinity yields

(79)

Note that the limit of each term exists. Also consider the
following:

(80)

since , and, subsequently

(81)

Combining these findings and substituting them into (79) yields
the desired result.

APPENDIX B
PROOF OF THEOREM 5—CONVERGENCE

RATE TO THE FINAL TWO BINS

Note that . In order to
bound the expected range, we will upper and lower bound the
largest and smallest order statistics of the quantized node state

values at time step . To prove the proposed theorem, we make
use of the following bounds for the maximum and minimum
order statistics of (possibly dependent) samples [25],
[26]:

(82)
and

(83)
respectively. Using these bounds, in our setup, for the largest
order statistics gives

(84)

(85)

where we define to be -th row of the weight matrix taken to
the power and for
and used the properties of probabilistic quantization and the fact
that almost surely. Similarly, we have shown that

(86)

where for ,
yielding

(87)

Utilizing the Cauchy–Schwartz inequality reduces the above ex-
pression to

(88)

Clearly, to upper bound , we need to upper bound
. Hence, we derive an upper bound for

for any pair such that , in the following:

(89)

(90)

(91)

(92)

(93)

(94)

where (a) follows from the Triangle inequality, (b) from the fact
that the norm of any row of a matrix is smaller that the norm of
the matrix, (c) using the properties of the weight matrix, (d) by
the Norm inequality, and (e) due to the symmetric assumption
on the weight matrix. Finally, substituting (94) into (88) yields

(95)
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Moreover, using Thomson’s sharp bound relating order statis-
tics and sample standard deviation (for even, but a very sim-
ilar result exists for odd ) [29]

(96)

one can relate the bound given on the quantized node state
values range to the initial states’ range, i.e., the result stated in
the theorem.
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