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Abstract. Large-scale Video-on-Demand (VoD) systems with high stor-
age and high bandwidth requirements need a substantial amount of re-
sources to store, distribute and transport all of the content and deliver
it to the clients. We define an extension to the VoD equipment alloca-
tion problem as determining the number and model of VoD servers to
install at each potential replica location to minimize deployment costs
for a given set of distributed demand and available VoD server models.
We propose three novel heuristics that generate near-optimal solutions
and show that the number of replica sites for networks where the load
is unevenly distributed is low (35− 45% of potential locations), but that
the hit ratios at deployed replicas are high (> 85%).

1 Introduction

As the number of available titles and usage of video-on-demand services is ex-
pected to grow dramatically in the next years, many providers are planning
the deployment of large-scale video-on-demand (VoD) systems. These systems
require significant resources (bandwidth and storage) to store the videos, dis-
tribute them to caches, and deliver them to clients. An important and compli-
cated task part of the network planning phase is resource allocation. It consists
of determining the location and number of resources to deploy such that user
demand is satisfied, cost is minimized, and any quality of experience (QoE) con-
straints (delay, packet loss, frame loss, or packet jitter) are respected. The main
challenge is to build sufficiently accurate models for all of the factors involved:
the available infrastructure, the network topology, the peak/average usage of the
system, the popularity of each title, and bandwidth and storage requirements.

In the case of a distributed video-on-demand network deployment, the re-
sources to consider are the equipment required at the origin and proxy video
servers and for the actual transport between each location. We assume an ex-
isting topology with a high bandwidth capacity and focus on the equipment
required at each location to store and stream the content. A video server con-
sists of storage devices to cache the desired content and streaming devices to
deliver the videos to the users. In [1], we defined the VoD equipment alloca-
tion problem that consists of determining the number of streaming and storage



devices at each location in the topology such that the demand is satisfied and
the deployment cost is minimized. We showed that the nature of the equipment
installed at each location has a major impact on the design and on whether
it is beneficial to even cache content. A natural extension of the problem thus
involves identifying the best type of equipment to install at each location when
many models are available and there is flexibility for variation from site to site.
Therefore, in this paper, we address the problem of determining not only the
number, but also the model of the VoD servers at each potential replica location.

This paper is organized as follows. In Sect. 2, we formulate the VoD equip-
ment allocation problem such that the solution includes both the number and
model of the VoD servers. In Sect. 4, we present two simple algorithms (Full
Search and Centralized or Fully Distributed Heuristic) and three novel heuris-
tics (Greedy Search, Integer Relaxation Heuristic and Improved Greedy Search)
to solve the problem. In Sect. 5, we show and discuss the results of simulation
experiments performed on randomly generated topologies. Finally, in Sect. 6, we
present our conclusions and suggest future extensions to our work.

1.1 Related Work and Contribution

Researchers have tackled the problem of generating cost-efficient VoD network
designs using different optimization techniques: placement of replica servers,
video objects or allocation of available resources to minimize cost. Solving the
replica placement [2, 3] or video placement [4] problems independently of the
resource allocation problem usually leads to suboptimal solutions because the
location of the replicas has a direct impact on the amount of resources required.
Laoutaris et al. defined the storage capacity allocation problem as determining
the location of each object from a set to achieve minimal cost whilst enforcing a
capacity constraint [5]. Although they determine the actual storage requirements
at each node with their solution, the authors do not explicitly determine the
equipment required. In [6], Wauters et al. define an Integer Linear Programming
(ILP) model built on viewing behavior, grooming strategies, statistical multi-
plexing and Erlang modeling to specify the equipment required for transport
(the number of ports, multiplexers and switch ports) at each of the candidate
network nodes [6]. Thouin et al. defined the VoD equipment allocation problem
in [1] as the task of determining the number of VoD servers (which include both
a storage and streaming device) to deploy at each potential location in a network
topology such that the total demand is satisfied and the deployment cost is min-
imized. Solving the VoD equipment allocation problem determines the location
of the replicas, the amount of storage available to cache content, the streaming
capacity available to serve clients and the explicit specification of the equipment
installed at each location. However, our approach in [1] assumed that a fixed,
single and predetermined type of VoD server was available at each location. This
constraint rarely holds in practice and enforcing it leads to suboptimal designs
if the nature of the equipment is not a good fit to the streaming (user demand)
and storage (library size) requirements. This optimization problem also has some
similarities with the classical facility location problem which has been studied



thoroughly (many algorithms and exact heuristics have already been developed
to solve it). However, the presence of an origin server that gathers traffic from all
other locations and the non-linearity in some constraints make our problem sub-
stantially different even from the generalized form of the facility location problem
proposed in recent work [7] and thus unsolvable using available heuristics.

In this paper, we re-formulate the VoD equipment allocation problem to de-
termine both the number and model of the servers to install at each location.
Instead of fixing the streaming and storage capacity per VoD server at each site
(the approach used in [1]), we require the pre-specification of a set of available
VoD servers and select the model at each location that minimizes total network
cost. This leads to the faster generation of lower-cost solutions because the net-
work designer does not need to manually try all models for each potential site.
To solve the problem, we develop a network cost model solely in terms of the
numbers and models of servers and propose three novel heuristics: the Integer
Relaxation Heuristic and two greedy-search based algorithms (GS and IGS).

2 Problem Statement

We consider a metropolitan area network with one origin server and N potential
replica locations such as the one depicted in Fig. 1. Each cluster of clients has
worst-case demand Mi (peak usage demand) and is assigned to a potential replica
location with hit ratio hi that represents an estimate of the fraction of Mi served
at that replica, the other portion is served directly by the origin server.

W1: F1 = 1Gbps, 
G1 = 1TB, B1 = 10 k$ 
W2: F2 = 3Gbps, 
G1 = 2TB, B1 = 20 k$ 
W3: F3 = 2Gbps, 
G3 = 4TB, B3 = 18 k$ 

No VoD servers

REPLICA

MOVIE
STREAM

Fig. 1. Video-on-Demand equipment allocation problem. Logical connectivity between
origin, N = 5 potential replica server locations and clients. Clients’ requests (shown as
movie stream arrows) are served by replicas (if content is available) or by origin. Key
shows the specifications of W = 3 different VoD server models. We show the number
and type of VoD servers installed at each potential location. The optimal solution can
include locations with no equipment (empty square).

We address the VoD equipment allocation problem of determining not only
the number, but also the model of the VoD servers at each potential replica
location. To solve this problem, we require the specification of a set of available
VoD server models W = {wj : j = 1, . . . ,W} where wj is a VoD server with



streaming capacity Fj Gbps, storage capacity Gj TB and unit cost Bj k$. We
define the sets N = {ni : i = 1, . . . , N} and V = {vo, vi ∈ W : i = 1, . . . , N}
where ni is the number and vi is the model of the servers installed at location i.
The optimization problem is expressed as follows:

{N ∗,V∗} = arg min
N ,V

CTOTV (N ) (1)

where CTOTV (N ) is the total cost of the network CTOT for a fixed set V.

no ·Go ≥ Y · file size (2)
ni · Fi ≥ hi ·Mi, ∀i ∈ {1 . . . N} (3)

no · Fo ≥
N∑

i=1

(1− hi)Mi (4)

Ĥ(ni ·Gi) ≥ hi, ∀i ∈ {1 . . . N} (5)

The first constraint states that the storage capacity at the origin must be large
enough to host the entire initial library where Y is the number of files in the
library. The constraints in (3) and (4) ensure that the streaming capacity at
each replica and the origin is large enough. For each replica sites, the streaming
capacity required is at least the fraction of the user demand coming from its
associated cluster of clients. For the origin, the total demand is equal to the sum
of all residuals fractions of the demand that are not handled by the replicas. In
(5), we introduce Ĥ, an estimate of the hit ratio as a function of the storage
capacity (we give more details about the form of Ĥ in Sect. 3). This constraint
states that the amount of storage at every location should be large enough such
that the estimated hit ratio is greater than the actual hit ratio hi; that a fraction
of the requests equal to hi are for files stored at the replica.

3 Network Cost Model

In order to perform a direct optimization, we derive an expression for the de-
ployment cost solely in terms of N and V. We express the total cost CTOT as
the sum of the cost of infrastructure, CT , and the cost of transport, CS :

CT = f1(no, vo) +
N∑

i=1

f1(ni, vi) CS =
N∑

i=1

f2(hi,Mi)

CTOT = f1(no, vo) +
N∑

i=1

f1(ni, vi) + f2(hi,Mi) (6)

The cost of infrastructure at each potential location and the origin includes
a start-up cost for installation and software (Ai) and increases linearly with the
number of VoD servers installed (ni). Note that f1 is also a function of vi which
defines Bi, Fi and Gi.



f1(ni, vi) = Ai + Bini (7)

The cost of transport for each location is inspired from the model proposed
by Mason et al. is divided in two components: transport from the replica to the
clients (CSRCi

) and from the origin to the replica (CSORi
) [8]. CSRCi

includes the
cost of network interfaces (CIF ) and fiber (Cf ). The number of network interfaces
(nRCi

) required is proportional to the demand Mi and the fiber capacity (c). For
transport from the origin to the replica location, we add the cost of DWDM with
wmax-ports multiplexers (CDWDM ) and line amplifiers (CLA). The number of
network interfaces (nORi) required is a function of the demand Mi and the hit
ratio hi: the amount of traffic on this link is equal to the fraction of the demand
un-served by the replica. For more details on the cost functions f1 and f2, the
reader is referred to [1].

CSRCi
= nRCi

· (2 · CIF + dRCi
· Cf )

CSORi
= nORi(2 · CIF ) +

nORi

wmax

[
2CDWDM + dORi · Cf +

(
dORi

maxamp

)
· CLA

]

nORi
=

(1− hi) ·Mi

c
nRCi

=
Mi

c

f2(hi,Mi) = CSORi
+ CSRCi

(8)

To derive an expression for CTOT solely in terms of ni, we resolve the hit
ratio hi and number of servers at the origin no as functions of ni. To estimate
the hit ratio Ĥ, we use (9), a function of the cache size ratio Xi (number of files
in the cache / number of total files in the library), the library size Y and the
number of files added to the library every week Z. We designed the function and
determined best-fit constants K1 to K8 using a discrete-time simulator based on
the file access model proposed by Gummadi et al. in [9] (refer to [1] for more
details).

Ĥ = A(Y,Z) + B(Y, Z) · log(X) (9)

A = K1 + K2Z + K3 log(Y ) + K4Z log(Y ) B = K5 + K6Z + K7Y + K8ZY

The hit ratio at a location is limited by either the streaming or the storage
capacity represented by constraints shown in (3) and (5). We isolate hi in both
expressions and define f3(ni, vi) as the minimum (worst-case) hit ratio:

f3(ni, vi) = min
[
ni · Fi

Mi
, Ĥ

(
ni ·Gi

Y · file size
, Y, Z

)]
(10)

The number of servers required at the origin, no, is also constrained by either
streaming or storage (shown in (4) and (2)). In (11), we define no as f4(N ,V)
by substituting hi with the expression in (10).



f4(N ,V) = max

[∑N
i=1(1− hi) ·Mi

Fo
,
Y · file size

Go

]
(11)

We replace the equations for no and hi in (6):

CTOT = f1(f4(N ,V)) +
N∑

i=1

f1(ni) + f2(f3(ni, vi)) (12)

4 Description of Heuristics

4.1 Full Search (FS)

The Full Search is a very straightforward approach that consists of trying all the
possible points in the solution space. We reduce this space by calculating the
maximum number of servers it is worth installing at a given location using (13).
We define ub = {ubi : i = 1, . . . , N} where ubi is the number of servers required
to store the entire library and handle 100% of the requests (hi = 1.0).

ubi = max
(

Mi

Fi
,
Y · file size

Gi

)
(13)

For a given V, the boundaries of the solution space are N = 0 to ub where
0 = {ni = 0 : i = 1, . . . , N}. To complete the full search, all the possible
combinations of V must also be tried. Although this procedure is guaranteed to
find the optimal solution, it is very computationally expensive and the amount of
time to search the entire space grows exponentially with the size of the network.

4.2 Central or Fully Distributed Heuristic (CoFDH)

The Central or Fully Distributed Heuristic simply calculates the cost of a cen-
tralized design (∀i : ni = 0) and a fully distributed design (∀i : ni = ubi) for each
available VoD server model in W and picks the cheapest design. This heuristic
is straight-forward and highly suboptimal, but it provides an upper-bound that
can be used as a comparison base for other approaches.

4.3 Greedy Search (GS)

We define a search topology in the discrete solution space where each solution
is connected to its neighbouring solutions. In this case, a neighbour consists of
adding one server at one of the locations. Greedy Search is a searching heuristic
that explores all neighbouring nodes and selects the one that yields the best
solution at every iteration without considering the subsequent steps [10].



4.4 Improved Greedy Search (IGS)

The Improved Greedy Search is divided into two steps inspired by GS. The
difference is that a neighbour solution is obtained by adding or removing ubi

servers at location i. The motivation behind this is that the hit ratio at replica
location is often very high which leads to ni close to ubi. During the first step
of the heuristic, we iteratively add servers in a greedy-fashion starting from a
centralized design by setting ni = ubi at the location that achieves the lowest
cost. We complete the first step and determine an initial integer solution by
repeating this procedure for each VoD server model.

The second step is an exploration procedure in the neighbourhood of the
initial solution. In a greedy-type approach, we add or remove, at iteration k,
one server to the initial solution at the location that minimizes the cost Ck.
We stop the search when Cj ≥ Cj−1 ∀j ∈ k − I + 1. . .k or when Cj ≥ CIGS

∀j ∈ k − 2I + 1. . .k (minimum cost has not decreased for 2I iterations).

4.5 Integer Relaxation Heuristic (IRH)

The first step of the Integer Relaxation Heuristic is to find a non-integer solution
for each server model using a constrained nonlinear optimization algorithm based
on sequential quadratic programming [11]. Then, we calculate the cost associated
with each replica (CTi

+ CSORi
) and determine the model that minimizes this

cost for each location. We complete the initial solution by determining the best
server model to install at the origin. In the second step, we perform two different
searches to find a near-optimal integer solution: we iteratively (i) set ni = 0 at
each location to make sure it is profitable to setup a replica and then (ii) try to
remove or add up to two servers at each location until we find a local minimum.

5 Simulation Experiments

Our simulation results were obtained by applying our heuristics to different
networks (simulations were executed on a AMD Athlon 3000+ with 1 GB of OCZ
Premier Series 400 MHz Dual Channel memory), each defined by the constant
variables in Table 1 and choosing values for the other network parameters from
uniform distributions with the ranges specified in Table 2 (these values were
obtained from discussions with industrial partners [12]).

5.1 Complexity

Table 3 presents the size of the solution space for different network topologies
(generated using the values displayed in Table 1 and Table 2) which consist
of all possible number of servers (ni = 0 to ni = ubi) and server models at
each location. From other experiments, we measured that the machines we used
for simulations explore 4000 solutions per second on average, which allows us
to estimate to time it would take to explore the entire solution space in order



Table 1. Values of constants.

Variable Value

CIF 10 k$
CDWDM 25 k$

CLA 10 k$
Cf 0.006 k$/km

wmax 16
c 10 Gbps

maxamp 75 km
bit rate 3.75 Mbps
duration 5400 s
file size 2.53 GB

Table 2. Range of the variables.

Variable Min Max

dOR (km) 0 50
dRC (km) 0 5
Y (files) 1000 10000

Z (files/week) 0 100
priceGbps (k$/Gbps) 0 4

priceTB (k$/TB) 0 3
A (k$) 6 36

F (Gbps) 1 5
G (TB) 1 11

M (Gbps) 1 20

to determine the global optimal solution. From our estimates, it is clear that
performing a full search is infeasible as even the smallest problems (N = 10,K =
1) can take up to thousands of days to solve depending on the demand and the
specifications of the equipment. This shows that heuristics are essential to solve
the VoD Equipment Allocation Problem.

Table 3. Number of possible solutions for topologies of N locations with K possible
VoD server models and estimate of time taken to find the global optimal solution
based on an observed average rate of 4000 solutions per second. Values obtained from
50 different topologies for each pair of (N,K).

N K Number of solutions Estimated time (days)
min median max min median max

10 1 7.8× 105 4.5× 108 9.5× 1013 2.2× 10−3 1.3× 100 2.8× 105

25 1 5.6× 1014 7.1× 1020 2.4× 1035 1.6× 106 2.1× 1012 6.9× 1026

50 1 2.0× 1028 1.4× 1040 1.2× 1068 5.9× 1019 4.1× 1031 3.5× 1059

100 1 1.9× 1060 5.0× 1079 1.3× 10130 5.6× 1051 1.4× 1071 3.7× 10121

15 2 9.1× 1013 2.0× 1018 6.7× 1023 2.6× 105 5.9× 109 1.9× 1015

10 3 5.4× 1010 1.0× 1014 4.3× 1017 1.6× 102 2.9× 105 1.3× 109

5.2 Performance

In this section, we evaluate the performance of our heuristics. In our first set of
tests, we analyse small networks to allow comparison with the full search, which
cannot produce a solution for larger networks within a reasonable time frame.
In Fig. 2, we show the performance of our heuristics by dividing the cost of the
solution by the optimal solution provided by the full search. For these small
networks, Integer Relaxation Heuristic and Improved Greedy Search perform
within 4% of the optimal solution. For all values of N and W , both IRH and
IGS perform better than the Greedy Search.

In Fig. 3, we show values of the ratio between the cost of Integer Relaxation
Heuristic, Improved Greedy Search and Greedy Search and the cost of CoFDH.
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Fig. 2. Cost ratio between heuristics and the full search averaged over 30 runs for
networks with the number of locations N ∈ {1, . . . , 5} and the number server model
W = 1 (LEFT) and another series with N = 3 and W ∈ {1, 2, 3} (RIGHT).
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Fig. 3. Cost ratio between the heuristics solution and CoFDH averaged over 25 runs.
IRH+IGS is the average of the minimum value between IRH and IGS for all runs.

Whereas Greedy Search is actually very close to the cost produced by CoFDH,
the other two heuristics generate solutions that cost 2-5% less. It is not clear from
those plots whether Integer Relaxation Heuristic or Improved Greedy Search
performs better. By combining both (choosing the best solution of the two),
we obtain a better heuristic (IRH+IGS), which achieves a 4-6% cost reduction
compared to CoFDH. In the left panel, we notice the downward trend of the
cost fraction as the number of locations in the network increases because more
modifications to the CoFDH design can be made to reduce cost. For the same set
of tests, we also observed the computational time in seconds of each heuristic.
The Integer Relaxation Heuristic was the slowest of the tested heuristics because
of constrained optimization using SQP, but it still converges in a reasonable
amount of time (< 250 seconds for N = 100 and W = 10). Since the computation
time of Improved Greedy Search is so low (< 10 seconds), we can combine IRH
and IGS and obtain a solution in a timely fashion.



5.3 Analysis

Finally, we focus on the networks with six server models (similar behaviour was
observed for other values of W ) to analyze the ratio of locations with replicas
and average demand at replica locations. The left panel of Fig. 4 shows that
for networks of any size, where demand is not uniformly distributed among all
locations (the demand at each location is different), the percentage of locations
where a replica will be deployed is below 40% for both heuristics. Although a case
where the demand load is evenly shared among all the locations is more plausible,
this result indicates that it is not always advantageous to cache content. If the
demand is too low then it can be more cost-effective to assume the entire load
from a group of clients directly at the origin. An impact of this low percentage
is the number of servers installed at the origin. Because the fraction of locations
where replicas are installed remains approximately constant for any value of N ,
the total number of sites for which the origin must assume the demand grows as
the network becomes larger.
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Fig. 4. LEFT: Ratio between the number of replicas (location with cached content) and
potential locations. RIGHT: Average load on the locations where replicas are installed
(Rep) and where no replicas are installed (NoRep). The values shown are averages of
25 runs with W = 6.

In the right panel of Fig. 4, we depict the difference between the average
demand at replica locations and that at sites where no caching is performed.
Whereas there is only a marginal difference in the GS case, the average demand
at replica sites in the IRH+IGS solutions is almost twice the average demand
of the other locations. The solutions generated by combining Integer Relaxation
Heuristic and Improved Greedy Search have a much lower total cost than the GS
solutions, indicating that it is more cost-efficient to install replicas at locations
where demand is high and transport the entire load of locations with low demand
to the origin.



6 Concluding Remarks

In this paper, we defined an extension of the VoD equipment allocation problem
described in [1]. Instead of considering fixed and pre-determined streaming and
storage capacity at each location, we require the specification of a set of available
VoD servers models. The optimization problem consists of choosing the number
and type of VoD servers to install at each potential location in the network such
that cost is minimized. For most topologies, we showed that it is infeasible to
obtain the global optimal solution. We described three heuristics to find a near-
optimal solution including two greedy-type approaches (GS and IGS) and an
integer relaxation method (IRH) that we implemented in an interactive design
tool shown in Fig. 5. We combined IRH and IGS by choosing the best of the two
to obtain a better solution while maintaining low computational time.

Fig. 5. Screenshot of the design tool that implements our heuristic (IRH+IGS) to
solve the VoD equipment allocation problem. A sample topology of potential replica
locations and the properties window of a selected replica location is shown in the figure.

We saw that a way to obtain a cost-efficient solution is to use equipment
(VoD server model) that satisfies the streaming and storage requirements of
most of the locations in the topology. Alternatively, the network designer could
strive to divide the demand evenly among all locations such that it is optimal to
deploy replicas at most locations using the same model of equipment. A sensible
extension to the resource allocation problem we addressed in this paper is the
problem of jointly designing the VoD network and the logical topology: choosing
a topology that allows an allocation of resources which minimizes the deployment



cost of the network. We also observed that limiting ourselves to a single VoD
server model per location, solutions produced with our heuristics often deploy
the same model at all replica sites. Our preliminary results show that relaxing
this constraint allows finer tuning and the possibility to match more closely the
demand in storage and streaming at each location and leads to cost savings.

Other future research avenues include the scenario where the service provider
owns network equipment or infrastructures prior to the deployment. However,
even if there is no installation cost, there are still fees incurred by the usage
and maintenance of the equipment and the resources, which have to be consid-
ered when generating solutions for this scenario. Also, we focused on large-scale
deployments, but there is also the issue of scalability of such deployments. As
the library reaches tens of thousands of movies, the access model we assumed
changes as a larger portion of requests are located in the heavy tail of the pop-
ularity distribution (‘long-tail’ of content).
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